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Abstract

The interaction between trace shortwave radiative absorbers and the dynamical
circulation is shown to be linearly unstable for horizontally uniform basic states
with a vertical gradient in the basic state absorber mixing ratio. Two types of
instability are identified, described as the advective mode and the propagating
mode. The advective mode is usually unstable when the basic state absorber
mixing ratio decreases with height. Upward motion. high absorber concentration
and warm temperatures are typically in phase for this mode. Growth rates. which
can be competitive with those associated with baroclinic instability, are largest for
perturbations that are much shorter than the internal deformation radius. Thus.
the requirement that the basic state be horizontally uniform is often satisfied for the
advective mode. The propagating mode is normally unstable when the basic state
absorber mixing ratio increases with altitude. Propagating waves such as Rossby
and inertia-gravity waves are amplified by the feedback with absorber transport
and radiative heating. Growth rates for the propagating mode are usually bounded
by the frequency of oscillation of the ambient wave, an important limitation for
slowly propagating waves such as Rossby waves. Vertical transport of the absorber

by the amplifying mode is down the basic state absorber mixing ratio gradient in

each case.






1. Introduction

An outstanding feature of the terrestrial and Martian atmospheres is their near-
transparency with respect to solar radiation. Although terrestrial water clouds
scatter a significant fraction of the incoming solar radiation, and ozone absorbs
much of the ultraviolet radiation, most absorption of visible radiation normally
occurs at the surface. Radiative heating rates throughout most of the troposphere
are dominated instead by infrared radiative cooling.

In the Martian atmosphere this situation is occasionally disrupted by global-
scale dust storms, which increase the solar opacity of the atmosphere, leading to
substantial tropospheric warming. Although such global storms fortunately do
not develop in the Earth’s atmosphere, recent numerical simulations (Malone et
al.. 1986) involving the terrestrial atmospheric response to massive injections of
smoke produced by hypothetical post-nuclear war fires have exhibited a similar
phenomenon. Substantial lofting of the smoke is found to occur in these simula-
tions. suggesting that the feedback between shortwave radiative heating and the
dynamical response to the heating can be important. The observed occurrence of
Saharan dust storms (Westphal et al., 1987), lofting of smoke from forest fires,
and evidence of increased atmospheric turbidity during glacial times all suggest
that such interactions also occur locally in the Earth’s atmosphere. Given the
tendency of dust and soot to settle downward under the influence of gravity. the
lofting mechanism associated with the absorption of solar radiation is clearly a key
process in extending the duration and extent of dustv episodes.

The lofting mechanism is not a simple as one might expect. To illustrate this,
Figure 1 shows the distribution of absorber mixing ratio thirty days following the
injection of a Gaussian distribution centered at 10 km. as simulated by a two-

dimensional slab-symmetric model on a midlatitude f-plane. One would expect



to find that the patch of absorber had risen from its level of injection, due to
the circulation induced by the pressure gradients that develop from the horizontal
heating gradient associated with the absorber patch. In fact we find little evidence
of the patch-scale lofting because the horizontal scale of the absorber patch is so
large (3000 km). Instead, we find that substantial lofting has occured on horizontal
scales much smaller than the patch scale.The mechanism for this mode of lofting
i1s quite different from that associated with the horizontal inhomogeneity of the
patch, and will be the subject of this paper. Indeed. we shall find several distinct
absorber transport mechanisms. each of which can be characterized as an unstable
radiative-dynamical interaction.

Th interaction between radiative heating. the dynamical circulation, and an
absorber distribution has been investigated in several previous analytical studies.
Lindzen (1966a.b) and Leovy (1966) examined the interaction between ozone and
photochemical, shortwave radiative, and dynamical processes in the stratosphere
and mesosphere. Gierasch et al. (1973) proposed an instability mechanism involv-
ing clouds. longwave radiation, and the dynamical circulation. Houben (1981)
considered the interaction of Martian dust, solar radiation, and tidal circulations.

While these previous works represent important contributions to the specific
problems that they address. there exists as yet no general theory of unstable
radiative-dynamical interactions. The work of Lindzen {(1966a,b) and Leovy (1966)
specifically includes photochemical processes that, though important for ozone, do
not apply to aerosols. The theory developed by Geirasch et al. (1973) is restricted
to constituents that are important only for infrared radiation. Leovy et al. (1973),
Leovy and Zurek (1979). and Schneider {1983} discuss mechanisms for the interac-
tion of solar heating and transport of dust, but never explicitly represent the dust
transport. Houben (1981) treats dust transport, but only horizontally. Haberle

et al. (1982). Haberle et al. (1985), and Malone et al. (1986) treat the vertical



transport of the absorber, but resort to numerical means to do so. Given the
similarities in the coupling between the dynamical circulation and Martian dust.
stratospheric ozone, volcanic aerosols, tropospheric dust and smoke, and any other
shortwave radiative absorber. what is clearly needed 1s a general theory for the un-
stable interaction between the absorber and the dvnamical circulation. This paper
represents an attempt to develop just such a theory.

As in other instability theories, only modal (i.e.. exponentially amplifying) in-
stabilities shall be considered in the theory. Thus. lofting of the absorber due
simply to an initial horizontal inhomogeneity in its distribution will be excluded
from the initial analysis. While such nonmodal lofting can be important for ab-
sorber patches of limited horizontal scale. it is not as amenable to analysis as is
the modal instability. The obvious question of which form of lofting, modal or
nonmodal. is more important shall be addressed in Ghan and Covey (1988) using
a combination of numerical simulations and simple physical arguments.

For clarity the present theory is developed under a variety of simplifying approx-
imations. However. the general procedure is the same in each case. In particular.
the radiative heating is first expressed in terms of an absorber mixing ratio. The
equations governing conservation of mass. momentum, potential temperature and
absorber mixing ratio are then linearized about a horizontally uniform basic state.
The linear system of equations is then reduced to a single partial differential equa-
tion (PDE). By expressing solutions in terms of orthogonal basis functions with a
time dependence given by exp(—ict). the PDE reduces to an algebraic equation
for 0. Solutions are unstable if Im(o) > 0.

An important parameter that emerges from the analysis is the rate of radiative-

dynamical feedback. defined as
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where Sp is the solar constant, g is the basic state absorber mass mixing ratio. a

is the specific absorption coeflicient for the absorber. and

_ 1 oc "
T{z) = exp (——; / apoad:') (1.2)

1s the basic state transmissivity between the top of the atmosphere and level] :.
The remaining symbols take their standard meteorological meaning, as defined
in Appendix A. One interpretation of a is that a™! represents the time scale in
which perturbations in absorber mixing ratio. through vertical advection induced
by radiative heating. feed back upon themselves. In many instances the growth
rate of unstable disturbances is, in the absence of dissipation, proportional to a; in
most cases the growth rate does not exceed the feedback rate. Thus, the radiative-
dynamical feedback rate characterizes the growth rate. Bv determining limits to
the feedback rate, we can place an upper bound on the growth rate.

For example, if we assume that g(z) decreases exponentially with scale height

h. then for grey absorption

dqg  _ Lo _Ta H-h 13
where
Ta( ) =/_ apogd:' (1.4)

is the absorption optical depth from the top of the atmosphere to level . The

feedback rate then becomes

H H B
a:ao—(l-——)‘raexp(—-—) {1.3)
ho b H
where
R5So -6_-1
= — >~ 4 <1 S ;
ag cppoNzH:‘ < 107%s (1.6)

for po = 1kg m™>. Sy = 1360 Wm™>. N =107 %s"'. and H = 10 km. At sufficiently
high altitudes. where 7, < p, the transmissivitv is near unity but the absorber
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gradient is small, so the feedback rate is small. In optically thick atmospheres
(T, > 1), the absorber gradient is large near the surface but the transmissivity
is small. so the feedback rate is again small. However, at the altitude for which

7. = pu the feedback rate for a given g(z) is a maximum, given by

amax = 037 ap p— |1 — —

R (-5

For u = 1 (i.e.. summertime at local noon). maximum values are

_] . _
s — {(4 days) for h = H = 10 km (1.8)

(1.7 hrs)‘1 for h = H/10 =1 km
Thus. if the absorption optical depth exceeds unity and the vertical gradient of
absorber mixing ratio is large enough, the radiative-dynamical feedback rate in
the summer hemisphere (i.e., when solar radiation 1s strong) can be quite strong.
Growth rates of unstable modes can be competitive with those associated with
baroclinic instability.

The physical mechanism for the instability depends on whether the basic state
absorber mixing ratio increases or decreases with altitude. If the basic state ab-
sorber mixing ratio decreases with altitude. then upward motion increases the local
absorber concentration. Assuming radiative heating increases with increasing local
absorber concentration. the upward motion increases the radiative heating, leading
to warming. If the perturbation is to amplify. warm temperatures must be posi-
tively correlated with the upward motion. To maximize the conversion of potential
energy to kinetic energy. warm temperatures should be perfectly correlated with
the upward motion. In this instance. this occurs if the frequency of oscillation
1s much less than the growth rate. As illustrated in Figure 2. upward motion,
high absorber concentration, radiative heating. and warm temperatures all coin-
cide. This unstable mode we shall term the advective mode, since propagation for
this mode i1s weak: indeed. the mode does not propagate at all in the limit of zero

radiative-dynamical feedback.
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If, on the other hand, the basic state absorber mixing ratio increases with
altitude, then the advective mode is damped. However. as we shall demonstrate.
propagating Rossby and inertia-gravity waves can amplify. If the frequency of
oscillation is much larger than the growth rate, then high absorber concentrations.
and hence strong radiative heating, lags downward motion by one quarter cycle, and
lead warm temperatures by one quarter cyle. Thus. warm temperatures are again
positively correlated with upward motion. Potential energy is converted to kinetic
energy. and the perturbation amplifies. This mechanism was first described by
Leovy (1966). Figure 2 also illustrates the phase relation for this type of instability,
which we shall term a propagating instability because it relies on propagation
for the proper phase relation of heating. temperature, and vertical motion. Note
that the growth rate for the propagating instability must be much less than the
frequency of oscillation. a significant constraint for slowly propagating waves when
the radiative-dynamical feedback rate is strong.

The remainder of this paper shall describe various aspects of the radiative-
dynamical interaction in considerably greater detail. Section 2 discusses the repre-
sentation of the radiative heating in terms of the absorber mixing ratio. In section
3 the theory is developed using the quasi-geostrophic approximation for uniform
radiative-dynamucal feedback; the theory 1s generalized 1o the primitive equations
on an f-plane and on a 3-plane in section 4. Distributions of absorber mixing ratio
that are consistent with uniform radiative-dynamical feedback are determined in
section 5. Complicating factors such as dissipation. vertical shear, and scatter-
ing, which are neglected in the present paper. are treated in Ghan(1988b). The
conclusions are summarized in section 6.

The development of the theory of radiative-dvnamical interaction is intention-
ally general, with relatively few references to specific examples of physical phenom-

ena. This approach 1s taken to permit the exploration of a wide range of values in



parameter space, and hence broaden our understanding of the radiative-dynamical
interaction. Indeed. numerous surprising aspects of the interaction are discovered

which might have been overlooked in a more specialized investigation.



2. Parameterization of Radiative Heating

The first step in developing a theory of radiative-dynamical instability is to
express the shortwave radiative heating in terms of the absorber distribution. Here
we do so under the assumption that scattering can be neglected and that absorption
is grey (i.e., independent of wavelength in the solar spectrum). Although the first
assumption is not strictly true for most aerosols. calculations discussed in Ghan
(1988b) demonstrate little sensitivity to the fraction of sunlight scattered. The grey
approximation is reasonable for many aerosols but is inaccurate for most gaseous
absorbers. However. nongrey effects can be treated with little loss of generality.

In the absence of scattering, the shortwave radiative heating at a level - can

be expressed. under the grey approximation, as

oF a 1 e ,
Qz) = —5 = uSo—exp <—~/ apoqd: ) = Soapog(z)T(z) (2.1)
z z J I

where Sg is the solar constant, p is the cosine of the solar zenith angle, a is the

specific absorption coeflicient. ¢ is the absorber mass mixing ratio, and
1 e )
T(:)=exp (— - / apogd: (2.2)
H I
is the atmospheric transmissivity. For small perturbations about a stratified g{ =).

Q' =~ Soapo (Tq' — T’ (2.3)

unless ¢ < 0. in which case Q' = 0.

The first term in (2.3) represents the dependence of the local perturbation
heating rate on the local perturbation absorber concentration. The second term
represents the dependence of the heating on the absorption above the reference
level. If. for example, an absorber perturbation has a sufficiently deep vertical dis-

tribution, the reduction in the transmissivity due to high absorber concentrations



aloft can reduce or even dominate the enhanced heating associated with high local
absorber concentrations. Such perturbations in transmissivity, then, are poten-
tially important and hence should be treated. However, in the development of the
basic theory presented here we shall in the interest of simplicity neglect pertur-
bations in transmissivity. Then the parameterization of the perturbation heating
reduces to

Q' =~ SoapoTq'. (2.4)

For a discussion of the effect of perturbations in transmissivity on the radiative-
dynamical interaction. and the conditions under which it is important, see the

companion paper (Ghan, 1988b).



3. Quasi-Geostrophic Stability Analysis

The essential aspects of the radiative-dynamical instability can be demon-
strated most easily within the context of the quasi-geostrophic theory. In this
section we present an illustrative solution of the instability, or eigenvalue. problem
under a number of somewhat restrictive assumptions. These include, in addition
to the quasi-geostrophic approximation, the assumptions of a horizontally uniform
basic state, no vertical shear in the basic state low. no dissipation (or, at least. the
same uniform damping rate for all dependent variables). and uniform Briint-Vaisala
frequency and radiative-dynamical feedback rate. The generalization to the prim-
itive equations is considered in section 4; the effects of vertical shear, dissipation,
and nonuniform radiative-dynamical feedback are addressed in Ghan {1988b).

Consider the linearized quasi-geostrophic equations governing the conservation

of vorticity (. and potential temperature §. which for log-pressure coordinates can

be written

1 0
DC—BI’:fO *——(po u) (31)

003:

08
DBZ—; u 4‘Q/(ECP,OU) (32)
where

Lo L0 s
Yo (3:3)

is the linearized advection and damping operator. and £ = {p/pg)* is the Exner
function. The remaining symbols are defined in Appendix A.

In quasi-geostrophic theory. the horizontal velocity can be expressed in terms

of a streamfunction v.
v
-

= 5 (3.4)

¢=%u (3.5)
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and the potential temperature follows from the hydrostatic relation

S fod (3.6)

Substituting (3.4)-(3.6) into (3.1)-(3.2), the conservation equations for vorticity

and potential temperature become

0 1 0
(DV2+3£>L‘—f0 —E(pow) (3.7)
ov .2 , , ,
fo DE =-Nw -+ RQ/(CPPQH} . (3.8)

Solving (3.7) and (3.8) for the vertical velocity w vields the Rossby wave equation

y 0 I
—(poDw) + (DV' -3 ——) {N'w - RQ/(cppoH)] =0 (3.9)

fs 8z po 0= oz

where we have assumed % and hence D does not vary with altitude (this constraint
is relaxed in Ghan. 1988b).

The feedback between the radiative heating (Q and the dynamical circulation
w 1s treated by expressing the heating in terms of a shortwave radiative absorber
mixing ratio q and then relating the absorber concentration to the circulation.

Combining (2.4) and (3.9). the Rossby wave equation then becomes

, 0 1 8 9 SO\ L, RSDaTq'>
= - v~ 33— Ny — 1) = ) .
fO 3 pODw) (D -3 :r) ( w < 0 (3.10)

The linearized equation governing conservation of absorber can be similarly ex-

pressed, assuming a horizontally uniform basic state absorber distribution,

-
Dq = —5‘% w (3.11)

Eliminating ¢' between (3.10) and (3.11) vields the PDE

fEo1ao 2 %)
— — —(pgD*w) — (DV?* - 3~ - P = 1
REE a:(po w) — ( 3 WD —a)w =0 (3.12)
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where
_ RSoaT @
- CPJVZH aZ

(3.13)

is defined to be the rate of radiative-dynamical interaction. As we shall see, the
magnitude of a characterizes the growth rate of unstable solutions of (3.12).

We shall now assume that the coefficients of (3.12) are constant (density is as-
sumed to vary with a constant scale hei=ht H). This permits plane-wave solutions.
which greatly simplifies the analysis. While such an assumption is common and
often justifiable for the Briint-Vaisala frequency. it is not necessarily reasonable for
the radiative-dynamical feedback rate a. The effects of treating variations in the
feedback rate are discussed in Ghan (1983b).

Assuming N° and o are independent of height. normal mode solutions of the

form
w(zr.,y.z,t) = wg exp(z/2H ) expitlkz ~ {y + mz — ot)] (3.14)

vield the algebraic relation

fs

Vgn?Dgﬁ—HﬁL)—ikSM[)~cm::0 (3.15)
where
N 5 ]
T = B - .16
nt=m' - (3.16)
ki =k -6 . (3.17)

Solutions satisfying the proper boundary conditions are unstable provided Im{o) >

0. Because

D= —io — Ttk — ¢ (3.18)

for such waves. this is equivalent to the condition that the real part of D exceeds

€.



In addition to satisfying the dispersion relation (3.15), solutions must also

satisfy the boundary conditions. which are
w(0) = 0 (3.19a)

powy bounded as z — x (3.19b)

The lower boundary condition determines the vertical phase of solutions. For an
atmosphere with a finite top. the upper boundary condition leads to the restriction
that only a discrete set of vertical wavenumbers is permitted. For an infinite atmo-
sphere, this quantization does not apply. Note that downward energy propagation
is permitted due to energy released by the instability at higher levels.

We shall now consider solutions to (3.15). Although the solutions can be ex-
pressed analytically, the expressions are complicated and not particularly mean-
ingful. We shall instead consider several limiting cases.

In the first case the magnitude of the feedback rate is much less than the

frequency of internal Rosssby waves, i.e..

a & k3ik; (3.20)
where
2 _ g2 0 2 2
k3 k- ]V’Z (3 1)

Approximate solutions of (3.15) are

13k fr')n2 ia‘)kg fznz

D>— - a5 . , -
k¥ NS “T Tk N%

The first solution corresponds to an internal Rossby wave which propagates
westward with respect to the mean flow but. in the absence of radiative-dynamical
feedback (a = 0), does not amplify. The second solution corresponds to the ad-

vective mode which. in the absence of feedback. neither propagates nor grows. If
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SoaT # 0 but 3. = 0, the two solutions correspond to (a) the absorber being sim-
ply advected by the mean flow, forcing vertical motion through radiative heating,
and driving a circulation through vortex stretching. and (b) no absorber pertur-
bation, with Rossby waves propagating freely: if, on the other hand, g, # 0 but
SoaT = 0. the solutions correspond to (a} Rossby waves propagating freely, ad-
vecting the absorber, and (b) the absorber simply advected by the mean flow, with
no perturbation circulation.

In the presence of positive radiative-dynamical feedback (a > 0. 1.e.. absorber
mixing ratio decreasing with altitude), the Rossby mode is damped but the advec-
tive mode will amplify. The growth rate of the advective mode is approximately
equal to the feedback rate, and hence for spatial scales that satisfy (3.20) the
growth rate is independent of the spatial scales of the purturbation. In addition,
because a < k3/kj for this case and f2n> << N2kj in general, one can readily show
that the growth rate of the advective mode dominates the frequency of oscillation
(which. incidently. indicates weak eastward propagationi. Thus, the perturbation
heating and vertical velocity are in phase. with upward motion coinciding with
high absorber concentrations and temperatures.

In the presence of negative radiative-dvnamucal feedback (a < 0, 1.e.. absorber
mixing ratio increasing with height), the advective mode 1s damped but the Rossby
mode is unstable. The growth rate of the Rossby mode is largest for perturbations
that are long and shallow (i.e.. k3 < f*n?/N?2, which holds for horizontal scales
much longer than the internal deformation radius). with the maximum growth rate
approximately equal to the feedback rate which for this case is also much smaller
than the Rossby wave frequency. Thus. in contrast to the advective mode for
positive feedback. the growth rate of the Rossby mode for this case is much smaller
than the frequency of oscillation. Although the perturbation vertical velocitvy and

temperature are in phase for both the unstable advective mode and the unstable
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Rossby mode, the perturbation heating and vertical velocity are in phase for the
advective mode but they are nearly 90° out of phase for the Rossby mode. In
terms of energetics. both unstable modes amplify by generating available potential
energy (APE) through radiative heating (i.e., Q'#' > 0) and then converting the
APE to kinetic energyv (i.e.. w'@ > 0), but the energy generation process is less
efhicient for the Rossby mode because the phase difference between the heating and
temperature is nearly 90°.

For both positive and negative radiative-dynamical feedback the unstable mode
transports the absorber down the gradient of mean absorber mixing ratio. That

is, from the absorber balance the vertical transport

—_ 1 a_ a D,- a—‘
Wg = Re (-5 ) 5F w® = sy (3.23)

1s upward (downward) if the mean absorber mixing ratio decreases (increases) with
altitude. Thus. the unstable modes reduce the magnitude of the absorber gradient.
and hence reduce the instability of the radiative-dynamical system. The unstable
modes will continue to disperse the absorber distribution until the feedback mech-
anism 1s too weak to overcome the dissipative processes. Given (3.23) and simple
(or the more accurate general analytical) solutions such as (3.21) for the growth
rate and frequency, it may be possible to develop parameterizations for the ab-
sorber transport in terms of the basic state variables. However, a plausible closure
assumption for the perturbation amplitude iw' and a scale selection criterion are
required.
In the second limiting case we assume that

3k k3
KR

< a < f . (3.24)

The lower bound is greater than the Rossby wave frequency for all wave scales. The

upper bound follows from subsequent consideration of the primitive equations in

—
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section 4. Note that implicit in (3.24) is the assumption that the Coriolis frequency
exceeds the Rossby wave frequency. While this is true for synoptic scale waves in
midlatitudes, it is not true for planetary waves in midlatitudes or for all waves
near the equator. Thus. the present case is restricted to sub-planetary scales in

mid-latitudes. Approximate solutions of (3.15) for this case are

D~ Bk 3k

]

f3n? aki Bk fin® (3.25
2 o N KB RN )

The first solution again corresponds to the Rossby mode. while the second solution
represents the advective mode.

In the presence of positive radiative-dynamical feedback (a > 0), the advective
mode 1s again unstable, but with the growth rate somewhat less than the feedback
rate. The growth rate for this case depends on the spatial scales of the perturba-
tion. increasing with decreasing horizontal scale and increasing vertical scale. In
particular, the growth rate is largest for waves with horizontal scales much less
than the internal deformation radius. i.e.. for scales such that k3 ~ k2 > f?n?/N?2.
For all perturbation scales that satisfy the condition (3.24). one can show that the
growth rate of the advective mode again dominates the frequency of oscillation
(which again indicate weak eastward propagation).

In the presence of negative radiative-dynamical feedback {(a < 0). the Rossby
mode is unstable. The most notable feature of the approximate solution (3.25) for
the Rossby mode is that when the feedback is strong such that condition (3.24)
is satified. the growth rate of the Rossby mode actually decreases as the feedback
rate increases in magnitude. This is in contrast to the case with weak feedback.
in which the growth rate of the Rossby mode increases with the magnitude of the
feedback rate. Thus, for a given perturbation scale (k./.m), the growth rate of
the Rossby mode is largest for an intermediate feedback rate. Although we cannot

demonstrate it analytically. the feedback rate at which the Rossby mode growth
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rate is largest appears to be near the transition frequency between cases (3.20) and

(3.24), 1.e..

Bk k2
- —= . .2
2k (3.26)

am =

The scale dependence of the Rossby mode growth rate is fairly complicated. For
this reason we shall defer discussion of the scale dependence until section 4. in
which the dependence is illustrated graphically.

In summary, we have found through a number of simplifying approximations
that unstable radiative-dynamical interactions are possible when absorber mixing
ratio increases or decreases with height. The physical mechanisms for the instability
in the two cases are quite different, but also exhibit some similarities. We have
derived some approximate expressions for the complex eigenfrequencies in several
special cases. These and other expressions are summarized in Table 1. Many of
the assumptions required for the analysis in this illustrative analysis are relaxed
in the following section and in Ghan (1988b). Many of the basic conclusions are,

however. unaltered by the additional considerations.



4. Generalization to the Primitive Equations

The theory developed so far has been restricted by the quasi-geostrophic ap-
proximation, which filters out the inertia-gravity modes. Moreover. we shall find
that the quasi-geostrophic solution of the advective mode is inaccurate when the
rate of radiative-dynamical feedback exceeds the Coriolis frequency. To apply the
theory to the inertia-gravity modes. and to cases in which the feedback rate exceeds
the Coriolis frequency. the theory must be extended to the primitive equations.

Linearizing about a honzontally uniform basic state. the primitive equations

in log-pressure coordinates can be written

Du — fv = -%Ii (41)
Dv ~ fu = —g—j (4.2)
5~ 5 o arlpow) <0 (43)
D%? = -N%w - Cj)?H . (4.4)

The solution on a 3-plane is much more complicated than on an f-plane. Be-
cause inertia-gravity waves are insensitive to the 3 term. we shall first consider the

solution for a midlatitude f-plane.

a. Midlatitude f-Plane

On an f-plane. the Coriolis parameter is assumed to be constant. Assuming
the advective operator D is uniform. the primitive equations can then be reduced

to a single partial differential equation for the vertical velocity,

2 9 a1l o o i RQ
D° — f5)D— — — )= DV (N-w - -—2)=0
( fo) J: po (‘9:('00uJ (N u cppOH) (4.3)

This wave equation differs from the Rossby wave equation (3.9) because of the
presence of the D* term and the absence of a 3-term.

1%
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Combining (4.5) with the heating expression (2.4) and the absorber budget
equation (3.11) yields the PDE

(D2+f02)D58:;1_§(Pow) = N*VHD —ajue =0 (4.6)

where the radiative-dynamical feedback rate « is defined by (3.13). Assuming N.a
and the density scale height H are constant, normal mode solutions of the form

{3.14) yield the algebraic relation
(D* ~ fg)Dn* = N*ki(D—a)=0 . (4.7)

In the absence of radiative-dynamical feedback {a = 0). solutions to (4.7) are

Nk;

n

D =0, =

(4.8)

which correspond to the advective and eastward- and westward-propagating inertia-
gravity modes.

In the presence of feedback. solutions to (4.7) are more complicated. We shall
therefore consider approximate solutions in some limiting cases, corresponding to
whether the magnitude of the radiative-dynamical feedback rate is much greater

than or much less than a scale-dependent parameter

2Nk

3\/5_11](?::,

(4.9)

For waves that are either long and shallow {f?n° > Nzlc%) or short and deep
(fin? < NZk3). it can be shown that 5 is much larger than the Coriolis frequency.
For waves with an intermediate aspect ratio ( f*n* = N2k3) v is of the same order
as the Coriolis frequency. Thus. v is larger than or of the same order as f for all
wave scales.

In the first case. we assume weak radiative-dynamical feedback. i.e., ja| < +. If

«a < f.this condition is assured for all waves scales. Then approximate solutions

to (4.7) are

ak Nky ok

D~ — .= :
k3 n 2k

(4.10)
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which correspond to the advective mode and the eastward and westward propa-
gating inertia-gravity waves, respectively.

In the presence of positive radiative-dynamical feedback (a > 0, i.e., absorber
mixing ratio decreasing with altitude), the two inertia-gravity modes are damped
by the feedback. while the advective mode amplifies in the absence of dissipation.
In fact. the expression for the growth rate of the advective mode agrees exactly
with the approximate quasi-geostrophic solution (3.25) when the feedback rate 1s
much larger than the internal Rossby wave frequency. Thus, we conclude that
the quasi-geostrophic solution is accurate for all scales if the feedback rate is less
than the Coriolis frequency. Even for feedback rates greater than f. the quasi-
geostrophic solution is accurate for waves that are sufficiently short and deep or
sufficiently long and shallow that ‘@ <« -. Note that the oscillation frequency
of the advective mode vanishes for the present case because we have assumed an
f-plane rather than a J-plane.

In the presence of negative radiative-dynamical feedback (e < 0, 1.e., ab-
sorber mixing ratio increasing with altitude). the advective mode is damped. while
both inertia-gravity modes are unstable 1n the absence of dissipation. The scale-
dependence of the growth rate of the unstable inertia-gravity modes is 1dentical to
that of the unstable advective mode. except that the growth rate of the inertia-
gravity modes is one half that of the advective mode for the same feedback mag-
nitude. As with the Rossby waves on the .3-plane. the growth rate of the unstable
inertia-gravity waves can be shown to be much less than the frequency of oscilla-
tion. Thus, the Inertia-gravity waves will have a phase structure similar to that of
the unstable Rossby waves. Leovy (1966) first discussed the physical mechanism

of this mode of instability, in the context of the photochemistry of oxygen in the

lower mesosphere.



For strong radiative-dynamical feedback ( ¢ > ), approximate solutions to

(4.7) are

NP L=iv3 (N
D:a( 2) . —a = ( ) . (4.11)

a’n? 2 a’n?
In the presence of positive feedback (@ > 0). the advective mode is again non-
propagating and. in the absence of dissipation. unstable. However. the growth rate
increases much more slowly with increasing feedback. In particular, the growth
rate 1s proportional to the feedback rate to the one-third power. Moreover. the
scale dependence of the growth rate is different from the cases with weaker feed-
back. The growth rate increases with the vertical scale of the wave. even for waves
that are short and deep. and decreases as the horizontal scale increases, even for
waves that are long and shallow. For all waves scales for which 1a' > +, however.
the growth rate of the advective mode is much less than the feedback rate, and is
less than the quasi-geostrophic solution.

In the presence of negative radiative-dynamical feedback (a < 0), the inertia-
gravity modes are again unstable in the absence of dissipation. The growth rate of
the inertia-gravity modes is again equal to one-half that of the unstable advective
mode for the same feedback magnitude. The frequency of oscillation of the inertia-
gravity modes 1s greatly increased by the feedback. but is only slightly larger than
the growth rate.

Table 1 summarizes the approximate expressions for the complex eigenfre-

quency derived here. along with those derived in section 3.

b. 3-plane

We have seen that for the advective mode the latitudinal variation of the Cori-
olis parameter must be accounted for if i < 3k/k;. We have also seen that the

primitive equations may be required if ja > f. If f > 3k, k] then ias cannot be



both less than 3k/k3 and greater than f, so that the previous analyses are suffi-
cient to cover all possible feedback rates. However,1f f < 1a| < Bk/k3 the foregoing
analyses are inapplicable. In this case it is necessary to treat the pnmitive equa-
tions on a J3-plane. if not a sphere. In mudlatitudes, the condition f < Bk/k3 is
met for the planetary scales (for which spherical geometry is required regardless of
the feedback rate); in the subtropics and tropics, f may be less than Bk/k3 for a
variety of spatial scales.

Here we shall consider the radiative-dynamical feedback for the primitive equa-
tions on 3-planes. Two cases will be considered. namely a midlatitude 3-plane, for
which f < 3k/k3 for the planetary scales. and an equatorial 3-plane. for which
f < 3k, k3 for nearly all spatial scales.

In either case, accounting for the latitudinal variation of the Coriolis parameter
greatly complicates the analysis. In the absence of radiative-dynamical feedback,
the classical 3-plane theory of waves (Lindzen, 1967) reduces the linearized primi-
tive equations to a single equation for the meridional rather than vertical velocity:
solutions for which v = 0 are treated separately. We shall take the same approach

here. The resulting wave equation with radiative-dvnamical feedback can be writ-

ten

For the midlatitude case it is sufficient to treat f and J as constants in (4.12): this
approximation is not reasonable for the equatorial 3-plane. Because this distinction
alters the analysis considerably. we shall consider the midlatitude and equatorial
cases separately.

On a mid-latitude 3-plane f and 3 are treated as constants in (4.12). Then the

usual Fourier basis functions given by (3.14) are sufficient to reduce the problem



to an algebraic equation, namely.,

2
n

hY

D* — kiD? - (ak} +ik3)D - 1ak3 =0 . (4.13)

(]

This quartic equation for D admits four solutions. corresponding to the advec-
tive mode. the Rossby mode. and two inertia-gravity modes. We have discussed
these modes in the previous analyses of the quasi-geostrophic system on a mid-
latitude ;3-plane and the primitive equations on an f-plane. For synoptic and
mesoscales in midlatitudes, those treatments covered all possible cases except for
the inertia-gravity modes on a J-plane and the Rossby mode when the feedback
rate exceeds the Coriolis frequency. Here we shall consider those cases and so-
lutions when the feedback rate does not satisfy anv of the special limiting cases.
Although one can express exact solutions to (4.13) analytically. the expressions
are not meaningful. and hence will not be presented. Rather. we shall present the -
analytical solutions graphically, thereby illustrating the parametric dependence of
the growth rate for parameter ranges that do not admut simple solutions.

The advective mode 1s unstable for positive radiative-dynamical feedback, i.e..
absorber decreasing with altitude. Figure 3 shows the advective mode growth rate.
normalized by the feedback rate. as a function of the feedback rate, for zonal and
meridional wavelengths of 1000 km. and a vertical wavelength of 10 km. Three
different parameter regimes are evident in this figure. For feedback rates much
smaller than the internal Rossby wave frequency i3 x 10°" s~! for the wave scale
assumed in Figure 3), the growth rate is, consistent with {3.22). nearly equal to
the feedback rate. For feedback rates much larger than the Rossby wave frequency
but much smaller than the Coriolis frequency (107 s~ !). the growth rate is again
approximately proportional to the feedback rate. but with the constant of propor-
tionality less than one. Consistent with (3.25) and (4.10), the constant is kr;_)/krg‘.

or 0.67 for the wave scale assumed in Figure 3. For feedback rates much greater
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than the Coriolis frequency, the growth rate increases more slowly than the feed-
back rate. In particular. according to (4.11), the growth rate increases with the
feedback rate to the one-third power in this regime Thus. the growth rate of the
advective mode 1s always less than the feedback rate, and always increases as the
feedback rate increases.

Figure 4 shows the growth rate of the advective mode as a function of zonal
wavelength, for a feedback rate of 107° s™? (chosen to be competitive with baro-
clinic instability). a meridional wavelength of 10,000 km. and a vertical wavelength
of 10 km. Consistent with (3.25), the growth rate decreases with increasing zonal
scale. For very short zonal scales. condition (3.241 applies. so that by (3.25) the
growth rate is approximatelv equal to the feedback rate when the zonal scale 1s
much less than the internal deformation radius, i.e., when k% > fgnz/Nz. For the
10 km vertical wavelength, the internal deformation radius is 1000 km.

Figure 5 shows the advective mode growth rate as a function of vertical wave-
length, for a feedback rate of 107> s~! and zonal and meridional wavelengths of 1000
km. For such a horizontal scale. the external Rossby wave frequency is 1.3 x 107°
s71. much less than the assumed feedback rate. so that most waves will satisfy the
condition (3.24). Consistent with the corresponding approximate solution (3.25).
the growth rate increases as the vertical scale increases. eventually reaching the
feedback rate for waves whose internal deformation radius is much larger than the
horizontal scale of the wave.

In summary, the growth rate of the advective mode 1s always less than the
radiative-dynamical feedback rate. It increases with increasing feedback rate. in-
creasing vertical scale. and decreasing meridional and zonal scale. The latter scale
dependence suggests the requirement that the basic state be horizontally uniform
need only hold for spatial scales as small as the internal deformation radius. Al-

though Figures 4 and 5 consider only feedback rates less than the Coriolis frequency.
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(4.11) tells us that the same qualitative scale dependence of the advective mode
growth rate also holds for feedback rates larger than the Coriolis frequency.

According to (4.10) and (4.11), the growth rate of the inertia-gravity modes for
negative radiative-dynamical feedback (absorber increasing with altitude) has the
same scale dependence as that of the unstable advective mode, but with half the
amplitude for the same feedback rate magnitude. However. the analysis leading
to (4.10) aﬁd (4.11) 1s based on an f-plane. On a J-plane. we find that the 3
term enhances the growth rate of the advective mode when the feedback rate 1s
less than the Rossby wave frequency. [t remains to be seen whether the inertia-
gravity modes are also affected by the 3 term. Figure 6 shows the gravity wave
growth rate, normalized by the feedback rate, as a function of the feedback rate.
for zonal and meridional wavelengths of 1000 km and a vertical wavelength of
10 km. For feedback rates much larger than the Coriolis frequency (107* s71).
(4.11) applies. with the growth rate increasing with the cube root of the feedback
rate. For feedback rates much less than the Coriolis frequency, (4.10) applies, with
the growth rate proportional to the feedback rate. even for feedback rates much
less than the Rossby wave frequency. Thus. the analysis of the inertia-gravity
mode on the f-plane is a good approximation for all feedback rates. Because the
growth rates of the gravity and advective modes have the same scale dependence
for feedback rates larger than the Rossby wave frequency. we need not discuss
the scale dependence of the gravity modes. but refer the reader to the previous
discussion of the advective mode.

Of the three modes of instability. the Rossby mode 1s the most complex in terms
of its parametric dependence. The analysis of section 3 considered a wide range
in the feedback rate. from values much smaller than the Rossby wave frequency
to values much larger. but was restricted by the quasi-geostrophic approximation.

However, consistent with the fact that Rossby waves are low-frequency modes. the
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more general primitive equation solution of (4.13) for the Rossby mode is virtually
identical to the quasi-geostrophic solution. Thus, the approximate solutions (3.22)
and (3.25) for the Rossby mode are valid for feedback rates larger than the Coriolis
frequency as well as smaller.

Figure 7 shows the growth rate of the Rossby mode as a function of the feedback
rate, for a variety of zonal, meridional and vertical wavelengths. The most notable
feature of Figure 7 is that for each wave scale the Rossby mode growth rate peaks
at a specific feedback rate. This result is consistent with (3.22) and (3.25). which
indicate that for small feedback rates the Rossby mode growth rate increases as the
magnitude of the feedback rate increases. but for large feedback rates the growth
rate decreases as the feedback rate increases. The precise transition cannot be
determined analytically. but appears to be given by (3.26) i.e.. near the lower
bound of the feedback rate given in (3.24). For each of the wave scales of Figure 7,
this value of the feedback rate is indicated on the figure. The agreement between
this value and the actual feedback rate of maximum growth rate is evidently quite
good.

The scale dependence of the Rossby mode growth rate also exhibits some in-
teresting features. Figure 8 shows the Rossby mode growth rate as a function of
vertical wavelength for two different cases. One curve is for synoptic scale waves
with zonal and meridional wavelengths of 1000 km and a feedback rate of —107°
s™1. while the other curve is for planetary scale waves with zonal and meridional
wavelengths of 10,000 km and a feedback rate of -10"* s™!. In both cases the
growth rate is largest for an intermediate vertical wavelength. Although the para-
metric dependence is quite complex (for details the interested reader is refered to
Ghan. 1988a). the rule of thumb, based on a wide vanetv of cases, seems to be

that the growth rate for a given feedback rate and specified zonal and meridional



scales is largest for a vertical wavelength corresponding to an internal deformation
radius somewhat smaller than each of the horizontal wavelengths.

The dependence of the Rossby mode growth rate on zonal scale is also compli-
cated. In general. the growth rate for a given feedback rate and specified vertical
and meridional scales 1s largest for zonal scales somewhat longer than the defor-
mation radius. For example, Figure 9 shows the Rossby mode growth rate as a
function of zonal wavelength for a meridional wavelength of 1000 km, a vertical
wavelength of 10 km. and a feedback rate of ~107* <~ 1. The growth rate is seen
to peak at a zonal wavelength of about 1500 km. somewhat longer than the defor-
mation radius of about 1000 km. For more details concerning the dependence of
the growth rate on zonal scale. see Ghan (1988a).

The dependence of the Rossby mode growth rate on the mendional scale is
much simpler: for all parameter regimes. the growth rate increases as the meridional
scale of the perturbation increases. Thus. waves with the largest meridional scale
consistent with the horizontal domain of the radiative-dynamical feedback will grow
fastest in the linear stage.

We have so far only considered the scale dependence of the growth rate for each
dimension separately. A more general question is: for which three-dimensional wave
vector 1s the Rossby mode growth rate largest? According to the analysis of section
3. the Rossby mode growth rate is much less than the feedback rate when condition
(3.24) 1s satisified. but can be as large as the feedback rate when condition (3.20)
1s satisfied. When (3.20) is satistied, the feedback rate 1s largest for waves that are
shallow and long. i.e.. f2n% > N2k3. However. if the waves are too shallow, the
internal Rossby wave frequency won’t exceed the feedback rate. so that condition
(3.20) is not satisfied. Thus, the growth rate is largest for waves that are very long
and deep enough to satisfy (3.20). This is illustrated in Figure 10, which shows the

Rossby mode growth rate contoured as a function of zonal and vertical wavelength



for a meridional wavelength of 10,000 km, and a feedback rate of —107% s~!. The
growth rate is seen to increase as the zonal and vertical scales are progressively
increased.

For many problems the zone of strong radiative dynamical feedback may be
somewhat restricted. For Aexample, a layer of strong absorber gradient may span
only a few kilometers. In that case the vertical wavelength of the unstable modes
should not exceed the vertical span of strong feedback The zonal scale of the
fastest growing Rossby mode would then be limited somewhat.

The analysis of the primitive equations on a mid-latitude 3-plane has so far
been based on (4.12). which admits nontrivial solutions if the mendional veloc-
ity is nonzero. If, on the other hand. the meridional velocity is identically zero.
the primitive equations can be reduced to a single wave equation for the vertical

velocity.

— — — (pow) — _.\'Z(D —alwe, =0 . (4.14)

Substituting solutions of the form (3.14) vields the algebraic relation
n’D* - NYD -a)k*=0 . (4.15)

This cubic equation is identical to the corresponding equation for the primitive
equations on an f-plane, except that the two-dimensional wavenumber ki has
been replaced by the zonal wavenumber k*. and the Coriolis parameter is ab-
sent. Thus, in the absence of radiative-dynamical feedback, it describes an ad-
vective mode and two gravity (rather than inertia-gravity) modes. The Rossby
mode is missing because the meridional velocity is identically zero. In the presence
of the radiative-dynamical feedback, the analysis of section 4.a applies, but with
the two-dimensional and three-dimensional wavenumbers replaced by the zonal
wavenumber. Thus. for positive radiative-dynamical feedback, the advective mode
1s unstable in the absence of dissipation and the gravity modes are damped, while
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for negative feedback the advective mode is damped and the gravity modes are
unstable. For weak radiative-dynamical feedback (i.e., ! <« Nk/n), the growth
rates are. in the absence of dissipation, proportional to the feedback rate, while
for strong feedback (ia| > Nk/n) the growth rate is proportional to the cube
root of the feedback rate. The maximum growth rate of the advective mode is
the feedback rate. which occurs for all wavenumbers such that ‘a. < Nk/n. The
maximum growth rate of the gravity modes is one half the feedback rate. which
again occurs for all wavenumbers such that o <« Nk, n. In no instance does the
advective mode propagate, while the frequency of the gravity modes dominates the
growth rate except when o >» Nk/n.

Finally. consider the application of radiative-dynamical feedback to the trop-
ical atmosphere, in which i1t is not reasonable to treat the Coriolis parameter as
a constant in (4.12). Following the classical theory of equatorial 3-planes, we ap-
proximate the Coriolis parameter as a linear function of latitude. Equation (4.12)

then becomes

1

2 q2.2 "2
(D?* = 3*%*) D 5 o

2(pouy-_\*z(D-ol)(Dv?’_j 2)vzo . (4.16)
oz or

Because the coeflicients of (4.16) are no longer constant. the simple plane-wave

solution form (3.14) is inappropriate. Following the classical theory. we express

solutions in the form

v = V(y)exp|z/2H lexplilkz — m:z — ot) (4.17)

which reduces (4.18) to the ordinary differential equation
N¥D - a)DVy, - 3y’ D*n*V ~ [N*(D - a)(Bik - kD)~ D*n?|V = 0. (418

To reduce (4.1%8) to canonical form, we introduce the scaling y = ro and choose

s NYD -a)D

= —— : 4.1
’ 32D%n? (4.19)
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Then (4.18) reduces to

N2(D - a)(Bik — k*D) - D*n?

Voo — 07V 232 Dn?

V=0 . (4.20)

We can now expand solutions in a series of Hermite functions,

Vie)= >\ Hilo (4.21)
t ¢

and apply the orthogonality relation
H} — *H; = —(2( —1)H, (4.22)

to reduce (4.20) to the algebraic equation

n*D* = N*(u - a) (kD - ik8) ~ (26~ 1) N3nDyD(D —a)=0 . (4.23)

Equation (4.23) has eight solutions for D. However, because D determines
the meridional scaling (4.19), some of these solutions cannot satisfy the lateral
boundary conditions of boundedness. To see this. consider solutions with zero

meridional velocity. Then the 3 term vanishes and the dispersion relation (4.23)

»

reduces to

DY~ N¥ D - a)kP =0 . (4.24)

Equation (4.24) is very simular to (4.7) without the Coriolis term. The analysis
of section 4.a demonstrates that two of the three solutions correspond to eastward
and westward propagating gravity waves. and the third represents the advective

mode. which does not propagate at all. From the momentum equations with v = 0

we find that

Y . )
$ = ¢y exp -5 Y D expitlkr —m. ~ ot) . (4.2

(1]

)

In order to satisfy the boundedness condition for large y. the imaginary part of
D cannot be positive. Thus. only the eastward propagating (Kelvin) mode and
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the advective mode satisfy the boundary conditions: the westward propagating
solution must be rejected. In contrast with the classical theory, in which D is purely
imaginary and hence the solution is a Gaussian, D is complex in the presence of
feedback. and solutions oscillate in latitude.

Because of the large number of solutions of {4.23). we shall not attempt fur-
ther investigation of the equatorial 3-plane here. Given the ubiquity of unstable
modes in midlatitudes for nonzero meridional velocity and in the tropics for zero

meridional velocity. we would expect to find additional unstable solutions of (4.23).
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Uniform Feedback: Absorber Distributions for Semi-Infinite Atmospheres

In the development of this basic theorv of radiative-dynamical interactions.
we have adopted the assumption that the radiative-dynamical feedback rate is
uniformuly distributed throughout the atmosphere. It is not obvious that such an
assumption is reasonable for a semi-infinite atmosphere. If the radiative-dynamical
feedback rate 1s constrained to be constant. one nught expect that at some high
altitude the basic state absorber concentration implied by such a constraint must
become negative (for positive feedback) or unrealistically large (for negative feed-
back). If the resulting absorber distributions are unrealistic. we have a strong
incentive to consider the more general problem of nonuniform feedback. Here
we shall consider the question of what absorber distributions yield feedback rates
that are uniform. We shall find that certain plausible absorber distributions are
consistent with uniform radiative-dynamuical feedback throughout a semi-infinite
atmosphere.

Assunung that the density scale height and Brunt-Vaisala frequency are also

constant. the feedback rate

RSQG = d?]
Y= — -— 7 - 5.1]
T T NTH T d o
1s constant if
d*g dq

dz? U d:
To determune analytical expressions for the absorber distribution that satisfv
(3.2), we shall assume that both the specific absorption a and the density pg are
constant. Defining the non-dimensional measure of altitude, { = apgz/u. (5.2)

becomes

! L 2 -
g =-,1(q3) (5.3)



or. upon integration.

¢§=-57- ¢ (5.4)
where (' is the integration constant.
There are several possible solutions to (5.4). If " = —2C%. then one solution
of (5.4) 1s
g(¢)=2Ctan((>» - Cy v . (5.5)

From (5.4) one finds that the absorber mixing ratio decreases with altitude for this
case. However, (5.5) can only apply to finite atmospheres. in which the argument

of the tangent varies by less than 7. A second solution of (5.4) for C = —2C7 is
q(¢) =20 cot1Cy¢ — () {5.6)

which 1s identical to (5.5) shifted by =, 2.

Ho= 2(']2, then two other solutions to (5.4} are
g(¢) = 2C coth(Cy ¢ + () (5.7)

and
g(¢) =2Cy tanh ('] ( = () . (5.8)

Whereas (5.7) yields absorber distributions that also decrease with height. (5.8)
applies to absorbers increasing with height. Both (5.7) and (5.8) yield positive
absorber concentrations for semi-infinite as well as finite atmospheres. and hence
ought to prove more useful in representing the distribution of absorber mixing
ratio. However. a semi-infinite atmosphere requires a realistic representation of
density. Because we have assumed density to be constant in solving (5.2), our
solutions are only formally valid for relatively shallow atmospheres. We shall now.

therefore. consider numerical solutions of (5.2) for density decreasing exponentially

with scale height H.
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Figure 11 shows four vertical distributions of absorber mixing ratio determined
from the numerical solution of (5.2), subject to the boundary conditions g(0) = 0
and g.(0) =5 x 107'2, 1 » 10711, 2 x 107" and 5 x 107! m™!. The resemblance
between the curves and the hyperbolic tangent solution (5.8) is apparent. suggest-
ing that variations in atmospheric density do not qualitatively alter the solutions.
Note that because the hyperbolic tangent 1s bounded by unity. the solution (5.8)
does not produce physically unreasonable distributions of absorber mixing ratio at
high altitude.

The radiative-dynamical feedback rates (as defined by (3.1)) corresponding to
the four absorber distributions illustrated in Figure 11 are —1.23 x 107%, —1.46 <
107%, —1.32x107%. and —6.81 x 107" s~ ! for the surface gradients g.(0) = 5x107!%,
1x107'1.2x107" and 5 x 107! m™!, respectively. assuming a specific absorption
coefficient of 1000 m®kg ™', a solar constant of 1360 W m ~2. a solar zenith angle of
60°. and a Briint-Vaisala frequency of 10~ * s™! (the specific choice for the value of
the absorption coeflicient. though appropriate for smoke. 1s arbitrary in that the
feedback depends only on the product ag: the same feedback rates would therefore
arise for different absorption coeflicients if the basic state absorber mixing ratio
1s scaled accordingly). The numerical integration of (5.2) was only carried to an
altitude of 30 km. Above this level. the mixing ratio is assumed to be constant:
given the reduced atmospheric density at altitude. the error incurred by such a
treatment 1s small because for weak surface gradients in the absorber mixing ratio
there 1s little attenuation of the solar beam, while for strong surface gradients the
distribution rapidly approaches the asymptotic limit of the hyperbolic tangent and
hence is consistent with the treatment of uniform mixing ratio above the model
top. Note that the feedback rate is greatest for the intermediate surface absorber

gradient, in which the absorption optical depth from the top of the atmosphere

to the surface 1s roughly equal to the cosine of the solar zenith angle. For larger

34



surface gradients the transmission of sunlight to the surface is reduced to very low
levels, while for smaller surface gradients the transmission i1s nearly complete but.
because the surface gradient is low, the feedback rate 1s also small.

According to the analysis for constant density. several solutions that preserve
a constant feedback rate are possible when the absorber distribution decreases
with altitude. Figure 12 shows two vertical distributions of absorber mixing ratio
determined from numerical solutions of (5.2). subject to the boundary conditions
g(0) =10"%and g,(0) = -8 « 107 m™! and .10y = -9 < 1071 m~!. Although
the boundary conditions for these two solutions are very similar, the distribution
of absorber concentration at high altitudes is qualitatively very different. When
the surface gradient is weak, the mixing ratio approaches an asymptotic limit at
high altitude. a characteristic in common with the hyperbolic cotangent in the
analytical solution (5.7). When the surface gradient 1s suthciently strong. however.
the absorber mixing ratio becomes negative at high altitudes. This 1s a feature of
the cotangent function in solution (5.6).

The radiative-dynamical feedback rates for these two solutions are also quite
different. For the solution with the weaker surface gradient, the feedback rate is
4 x 107% 571, while for the stronger surface gradient the feedback rate is 4 x 10~°
s7! (except at those altitudes at which the absorber mixing ratio is zero). These
feedback rates differ so much, even at the surface where the surface gradients are
similar, because the transmussivity of the weak feedback solution is reduced by

absorption at higher altitudes.
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6. Summary

The theory developed here demonstrates the potential for unstable radiative-
dynamical interactions that are strong enough to compete with other purely dy-
namical instability mechanisms. Two distinct modes have been ‘identified, de-
scribed as advective and propagating modes. respectively.

In the advective mode, an instability typically arises when the absorber mixing
ratio decreases with altitude. Perturbations in absorber concentration, shortwave
radiative heating. vertical motion and temperature are all in phase. Propagation
with respect to the mean flow is weak. Amplification is most rapid for modes
that are short and deep. i.e.. for modes with horizontal scales much less than
the internal deformation radius. Thus. the requirement that the basic state be
horizontally uniform is satisfied for absorber distributions varying on spatial scales
larger than the deformation radius, and hence may hold 1n a variety of geophysical
applications.

Propagating modes such as Rossby and inertia-gravity waves become unstable
when the absorber mixing ratio increases with altitude. High absorber concentra-
tions and strong heating lag downward motion by about one quarter cycle; warm
temperatures lag the heating by one quarter cycle. and hence are in phase with
upward motion. Because strong propagation is necessarv to maintain the proper
phase relationships for energy release, the growth rate of propagating modes is typ-
ically much less than the frequency of oscillation. This constraint limits the growth
rate of the slowly propagating Rossby waves. The scale dependence of the growth
rate of the Rossby and inertia-gravity modes is quite different. with growth of the
Rossby modes most rapid for waves slightly longer than the internal deformation
radius. and growth of inertia-gravity modes most rapid for waves much shorter

than the deformation radius. Thus. while the assumption that the basic state is
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horizontally uniform will rarely hold for the Rossby mode, it will often apply in
the case of the inertia-gravity modes.

The fundamental parameter that emerges from the analysis is the rate of
radiative-dynamical feedback, defined as

RSwT 7
cp¥N?H 0:

(6.1}

The growth rate of unstable disturbances has been found in most instances to be
bounded by the magnitude of the feedback rate. so that a characterizes the growth
rate. For basic state absorber distributions that decav exponentially with height.
the feedback rate is largest at altitudes where the absorption optical depth equals
the cosine of the solar zenith angle. In such cases. the maximum feedback rate. and
hence the maximum growth rate. can be competitive with growth rates associated
with baroclinic instability.

Several plausible absorber distributions consistent with uniform radiative-dynamical
feedback have also been determined. These solutions are valid for semi-infinite at-
mospheres. and lend support to the assumption of uniform feedback rate adopted
in the basic theory.

The extension of this basic theory to account for a number of complicating
factors. including the effects of perturbations in transmissivity (associated with
absorber perturbations at higher altitudes), dissipative processes, basic state ver-
tical shear, and scattering, is discussed in the companion paper Ghan (1988b). In

addition. the application of the theory to Martian dust storms is considered in

Ghan and Covey (1988).
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APPENDIX A. Notation

time

zonal distance

meridional distance

vertical distance

pressure

zonal velocity

meridional velocity

vertical velocity

vorticity. g—; - ‘3—2

horizontal streamfunction
geopotential

potential temperature
absorber nuxing ratio
atmospheric density

density scale height

specific heat at constant pressure
gas constant

thermodynamic ratio R/c,
Brint-Vaisala frequency
cosine of solar zenith angle
solar constant

specific absorption coefhcient
radiative heating rate
transmissivity from top of atmosphere

Coriolis parameter
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WS

meridional gradient of f
zonal wavenumber
meridional wavenumber
vertical wavenumber

vertical wavenumber. n* = m? + (4H?)
k? —¢?

kr’l.! - fznz,/NQ

radiative-dynamical feedback rate

wave frequency (complex)

advective operator

dissipation rate

basic state

small perturbation from basic state
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Table 1.

Approximate solutions for the complex eigenfrequency o.

Feedback Rate
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Figure Captions

Figure 1. Absorber mixing ratio (mg/kg) simulated 30 days following an ab-
sorber initialization with a Gaussian horizontal distribution {standard deviation
3000 km) and a Gaussian vertical distribution with a maximum absorber mixing
ratio of 107% at 10 km and a standard deviation of 5 km. The model is a two-
dimensional slab-symmetric primitive-equation model on a midlatitude f-plane.
Moist processes are not represented explicitly. but are rather treated by prescrib-
ing a horizontally uniform absolute humidity for the purposes of radiative heating,
and adjusting the temperature lapse rate to that of a moist adiabat under super-
critical conditions. Longwave radiative cooling is treated using the Harshvardhan
et al. (1987) broad-band parameterization. Solar heating is simulated with the
Wiscombe (1977) delta-Eddington model. Radiative constituents are water vapor,
carbon dioxide. and ozone for the longwave. and ozone and the nominal absorber
for the short wave. The solar zenith angle is 60°. the solar constant 680 W m~2, and
the specific absorption of the absorber is 10® m® kg~!. The surface temperature is
prescribed as for an ocean-covered planet. with simple drag laws for the exchange of
heat and momentum at the surface. Sub-grid scale honzontal mixing is represented
by a Smagorinskv (1963) type parameterization. The model domain is 10.000 km,
with a horizontal grid spacing of 33 km as indicated by the axis tic marks. Details
of the numerical model are given in Ghan (1988a)

Figure 2.  Schematic structure of advective mode (top) and propagating mode
(bottom) of radiative-dynamical instability. In the propagating mode. phase prop-
agation 1s from left to right.

Figure 3. Advective mode growth rate normalized by the radiative-dynamical
feedback rate. as a function of the feedback rate. Midlatitude beta-plane. The zonal

and meridional wavelengths are 1000 km; the vertical wavelength is 10 km. The
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Briint- Vaisala frequency is 1072 s~!; the density scale height is 8 km. The Coriolis
and internal Rossby wave frequencies are indicated.
Figure 4. Advective mode growth rate as a function of zonal wavelength. for
a radiative-dynamical feedback rate of 10> s™! and a meridional wavelength of
10,000 km. Otherwise as in Figure 3. The internal deformation radius is indicated.
Figure 5. Advective mode growth rate as a function of vertical wavelength, for

a radiative-dynamical feedback rate of 107" s~ !. Otherwise as in Figure 3.

Figure 6. Normalized inertia-gravity mode growth rate as a function of the
radiative-dynamical feedback rate. Otherwise as in Figure 3.

Figure 7. Rossby mode growth rate as a function of the radiative-dynamical
feedback rate for zonal and meridional wavelengths of 1000 km and a vertical wave-
length of 10 km (solid line); for a zonal wavelength of 1000 km. a meridional wave-
length of 10.000 km. and a vertical wavelength of 10 km (long dashed line): for zonal
and meridional wavelengths of 1000 km and a vertical wavelength of 1 km (medium
dashed line); and for a zonal wavelength of 10,000 km, a meridional wavelength of
1000 km. and a vertical wavelength of 10 km (short dashed line). Otherwise as in
Figure 3.

Figure 8. Rossby mode growth rate as a function of vertical wavelength for
zonal and meridional wavelengths of 1000 km and a radiative-dynamical feedback
rate of —107" s~! (solid line); and for zonal and meridional wavelengths of 10.000
km and a feedback rate of —107® s7! (dashed line). Otherwise as in Figure 3.

Figure 9. Rossby mode growth rate as a function of zonal wavelength for a
meridional wavelength of 1000 km, a vertical wavelength of 10 km, and a radiative-

dynamical feedback rate of —107* s~!. Otherwise as in Figure 3.

Figure 10. Rossby mode growth rate as a function of zonal and vertical wave-
lengths. for a radiative-dynamical feedback rate of —107° s~!. Otherwise as in

Figure 3.



Figure 11. Vertical distribution of basic state absorber mixing ratio that yields
a uniform radiative-dynamical feedback rate. for a zero surface mixing ratio and
vertical gradients at the surface of 5 x 107" m™! (solid line), 1 x 10~ m~! (short
dashed line). 2 x 107! m™! (medium dashed line). and 5 « 107! m™! (long dashed
line). The specific absorption coefficient is assumed to be 1000 m* ke ™!, the solar
zenith angle 60°. and the density scale height 8 k.

Figure 12.  Vertical distribution of basic state absorber mixing ratio that vields
a uniform radiative-dynamical feedback rate. for a surface mixing ratio of 107° and
vertical gradients at the surface of —9 x 1071 m~! (solid line) and —8 x 1071® m~!

(dashed line). Otherwise as in Figure 11.
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